
Function and operator overloading

Contents

• Need of function overloading

• Need of operator overloading

• Overload +, -, unary -, increment operators.

Function overloading

• Same function but different signature.

• Signature means

1. May be no of arguments.

2. No of parameters.

3. Sequence of parameters.

4. return type.

Name mangling for overloaded
functions

e.g.

int sum(int a,int b) sum@1

float sum(float a,float b) sum@2

int sum(int a,float b) sum@3

Operator overloading

• Additional meaning is given to operators.

• Enhances power of extensibility.

• operator keyword is used to implement operator
overloading.

• Following operators we are overloading.

• Plus (+)

• Subtraction(-)

• Unary –

• Pre increment and post increment

Class cComplex

• For operator overloading we are considering
following class.

class cComplex

{

int real,imag;

public:

………………….

}

Operator overloading syntax

Syntax:

returntype operator # (parameterlist);

1. Here operator is keyword

2. # is placeholder

e.g.

cComplex operator +(cComplex c1);

Overload + operator

int main() //client code

{

cComplex c1(1,1);

cComplex c2(2,2);

cComplex c3 = c1 + c2;

}

Declaration:

cComplex operator + (cComplex& c2);

Definition:
cComplex cComplex::operator + (cComplex& c2)
{

cComplex temp;
temp.real = real + c2.real;
temp.imag = imag + c2.imag;
return temp;

}

Need of assignment operator
overloading

• cString s1(“Hello”);

• cString s2;

• s2=s1;

• It is ok. But it will perform shallow copy means member
wise copy.

• So it will create problem of memory leakage and dangling
pointer problem.

• So to overcome these problems we need to overload =
operator.

Overloading assignment operator
class cString
{

cString& operator = (cString &);
}
cString & cString::operator = (cString& s1)
{

if(this == &s)
{

return *this;
}
else
{

length=s1.length;
delete[] ptr;
ptr=new char[length + 1];
strcpy(ptr,s1.ptr);
return *this;

}
}

Difference between Copy constructor
and assignment operator overloading

cString s1(“Hello”);

cString s2=s1; //call for copy constructor

cString s2(s1); //call for copy constructor

cString s1(“hello”);

cString s2;

s2=s1; //call for assignment operator overloading

Lab Assignments

• Perform addition for different types of data by using
function overloading.

• Overload + , - ,unary minus and increment operator
for cComplex class.

• Overload = operator for cString class.

