Function and operator overloading

Contents

* Need of function overloading
* Need of operator overloading

* Overload +, -, unary -, increment operators.

Function overloading

* Same function but different signature.
* Signhature means

1. May be no of arguments.

2. No of parameters.

3. Sequence of parameters.

4. return type.

Name mangling for overloaded

functions
e.g.
int sum(int a,int b) sum@1
float sum(float a,float b) sum@?2

int sum(int a,float b) sum@3

Operator overloading

Additional meaning is given to operators.
Enhances power of extensibility.

operator keyword is used to implement operator
overloading.

Following operators we are overloading.
Plus (+)

Subtraction(-)

Unary —

Pre increment and post increment

Class cComplex

* For operator overloading we are considering
following class.

class cComplex

{

int real,imag;
public:

Operator overloading syntax

Syntax:

returntype operator # (parameterlist);

1. Here operator is keyword
2. #is placeholder

e.g.
cComplex operator +(cComplex cl);

Overload + operator

int main() //client code

{
cComplex c1(1,1);
cComplex c2(2,2);

cComplex c3 =cl +c2;

Declaration:
cComplex operator + (cComplex& c2);

Definition:
cComplex cComplex::operator + (cComplex& c2)
{

cComplex temp;

temp.real = real + c2.real;

temp.imag = imag + c2.imag;

return temp;

Need of assignment operator

overloading
cString s1(“Hello”);
cString s2;
s2=s1;

It is ok. But it will perform shallow copy means member
wise copy.

So it will create problem of memory leakage and dangling
pointer problem.

So to overcome these problems we need to overload =
operator.

Overloading assighment operator

class cString

{
cString& operator = (cString &);
}
cString & cString::operator = (cString& s1)
{
if(this == &s)
{
return *this;
}
else
{
length=s1.length;
delete[] ptr;
ptr=new char[length + 1];
strcpy(ptr,sl.ptr);
return *this;
}

Difference between Copy constructor
and assighment operator overloading

cString s1(“Hello”);
cString s2=s1; //call for copy constructor
cString s2(s1); //call for copy constructor

cString s1(“hello”);
cString s2;
s2=s1; //call for assignment operator overloading

Lab Assighments

* Perform addition for different types of data by using
function overloading.

e QOverload +, - ,unary minus and increment operator
for cComplex class.

* Overload = operator for cString class.

